SYNTHESIS OF 2-ALKYL(ARYL, HETARYL)-4-METHYL-1,2,3,4-TETRAHYDROQUINOLINES

V. V. Kuznetsov, A. É. Aliev, and N. S. Prostakov

We have developed a preparative, three stage of synthesis of substituted 1,2,3,4-tetrahydroquinolines. Treatment of N-aryl-imines with allylmagnesium bromide gave N-aryl-N-alkenylamines which were cyclized to the tetrahydroquinolines. The configurations and conformations of the 4-methyl-1,2,3,4-tetra-hydroquinolines containing different 2- substituents have been determined.

Di- and tetrahydroquinolines are used in medicine [1-3]. Compounds of this type are of interest for a study of their steric structure, the latter being important in the conformational analysis of condensed heterocyclic compounds.

This study continues our investigations into the use of imines in the synthesis of nitrogen containing rings [4-7]. We have developed a preparative, three stage synthesis of 4-methyl-1,2,3,4-tetrahydroquinolines with different substituents (alkyl, aryl, hetaryl) substituents at position 2.

The starting materials in these syntheses are the following available aldimines. N-butylidene- (I), benzylidene- (II), and m,p-dimethoxybenzylideneaniles (III), N-m, p-dimethoxybenzylidene-o-anisidine (IV) and the p-anisidine (V), N- α -furylidene- (VI), and 5-methyl-2-furylideneanilines (VII), and α -pyridine- (VIII), β -pyridine- (IX), and γ -pyridinealdehydeanils (X).

Treatment of these imines with alllylmagnesium bromide in ether of THF (depending on the starting material solubility) gave the previously unknown N-aryl-N-alkenylamines XI-XX.

TABLE 1. Physicochemical Properties of	of Compounds Synthesized
--	--------------------------

Compound	Empirical formula	Bp, °C/mm Hg	M ⁺	IR spectrum, v _{NH} , cm ⁻¹	Yield, %	
		105 200/				
XI	C ₁₃ H ₁₉ N	195200/4	189	3400	46	
XII	$C_{16}H_{17}N$	166168/6	223	3396	78	
XIII	$C_{18}H_{21}NO_2$	178180/2	267	3390	55	
XIV	C19H23NO3	198200/2	313	3415	53	
XV	C19H23NO3	240242/5	313	3380	51	
XVI	C14H15NO	146149/6	213	3395	50	
XVII	C15H17NO	106110/10	227	3400	53	
XVIII	$C_{15}H_{16}N_2$	155156/2	224	3405	94	
XIX	$C_{15}H_{16}N_2$	165170/3	224	3240	64	
XX	$C_{15}H_{16}N_2$	170175/3	224	3340	62	
XXI	C13H19N	215220/4	189	3396	62	
XXII	C ₁₆ H ₁₇ N	0,70*	223	3365	50	
XXIII	$C_{15}H_{16}N_2$	0,39*2	224	3395	67	
XXIV	$C_{15}H_{16}N_2$	0,31*2	224	3278	64	
XXV	C ₁₅ H ₁₆ N ₂	0,24*2	224	3300	87	
XXVI	C ₁₈ H ₂₁ NO ₂	0,51*2	283	3360	5	
XXVII	C19H23NO3	0,45*2	313	3348	2	

^{*}R_f: system hexane – ethyl acetate, 5:1.

Russian University of National Friendship, Moscow 117923. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 73-78, January, 1994. Original article submitted October 13, 1993.

^{*2}R_f: system hexane – ethyl acetate, 1:1.

TABLE 2. PMR Spectra Data for Homoallylamines XI-XX (CDCl₃, TMS)

Panoamo			Chemical s	Chemical shift, 8, ppm (multiplicity, J, Hz)	, J, Hz)		
niibodiila	-CH-	-CH ₂	CH ₂ = (2H,m)	=CH (1H, m)	Ar	ĸ	Other
X	XI 3,523,72 (m)*	2,222,50 (m)	4,905,17	5,526,07	6,527,27	1,001,67 (7H, m)	į
шх	XII 4,35 (t, 7,0)	2,50 (t, 7,0)	5,005,25	5.525,92	6,41.	6,417,35	4,08 (1H, br.s,NH)
шх	XIII 4,224,42 (m)*	2,422,62 (m)	5,005,27	5.555,95	6,457,17	7,17	3,85 (6H, s, OCH ₃)
XIX	XIV 4,204,37 (m)	2,55 (t, 8,0)	5,005,27	5.555,97	6,30.	6,306,94	3,80 (3H, s., OCH ₃); 3,82 (6H, s., OCH ₃)
X	XV 4,154,35 (m)	2,402,50 (m)	5,005,27	5.525,95	6,30	6,306,68	3,64 (3H, s, OCH ₃); 3,80 (6H, s, OCH ₃)
IAX	XVI 4,52 (t, 7,0)	2,60 (t, 7,0)	5,005,25	5.525,91	6,527,08 (5H, m); 6, 7,24 (1H, m, \alpha-Hfur.)	6,527,08 (5H, m); 6,20 (2H, m, β -H _{fur.}); 3,90 (1H, br.s.,NH) 7,24 (1H, m, α -H _{fur.})	3,90 (1H, br.s ,NH)
XVII	XVII 4,44 (t, 7,0)	2,59 (t, 7,5)	4,995,32	5.655,96	6,507,14 (5H, m); 6,24 (2H, m, β-H _{fur.})	,24 (2H, m, β -H _{fur.})	2,22 (3H, s, CH ₃); 3,60 (1H, br.s, NH)
XVIII	XVIII 4,404,62 (m)*	2,522,75 (m)	5,005,25	5,526,02	6,457,65 (8H, m); 8	6,457,65 (8H, m); 8,56 (1H, m, 2-H pyrid.)	ļ
XIX	XIX 4,364,55 (m)	2,452,65 (m)	5,025,30	5,526,01	6,307,30 (6H, m); 7,76 (1H, m, Hpyria.); 8,50 (2H, m, 2-H, 6-Hpyria.)	6,307,30 (6H, m); 7,76 (1H, m, 3-Hpyrid.); 8,50 (2H, m, 2-H, 6-Hpyrid.)	4,15 (1H, br.s, NH)
××	XX 4,154,66 (m)*	2,422,65 (m)	5,025,27	5,475,96	6,407,15 (5H,m); 7,30 (2H 8,53 (2H,m, 2-H, 6-H _{pyrid.})	6,407,15 (5H,m); 7,30 (2H,m, 3-H _{pyrid.}); 8,53 (2H,m, 2-H, 6-H _{pyrid.})	į

*Overlaps NH proton signal.

TABLE 3. Overall PMR Spectra of 2-Allyl(aryl)-1,2,3,4-tetrahydroquinolines XXI-XXVII (80 MHz, CDCl₃, TMS)

Com- pound	Chemical shift, δ, ppm										
	4-CH ₃	4-H m	NH br.s	2-11 m	2-R	Others					
XXI	1,30	2,90	3,60	4,23	1,431,65 (4H,m); 0,94 (3H, q)	6,447,22	_				
XXII	1,30	3,05	3,79	4,41	6,37.	7,42	_				
XXIII	1,35	3,10	4,20	4,62	7,358,60	6,527,20					
XXIV	1,35	3,14	4,49	3,96	7,308,62 6,547,19						
XXV	1,34	3,12	4,46	4,01	7,348,56 6,567,17						
XXVI	1,40	2,82	3,27	3,75	6,607,1 <i>5</i> 6,597,03		3,80; 3,87 (3H, s, OCH ₃				
XXVII	1,35	3,13	4,47	4,30			3,77; 3,90 (3 and 6H, s OCH ₃)				

I—III, VI—XIII, XVI—XX Ar = C₆H₅; IV, XIV Ar= C₆H₄OCH₃- ρ ; V, XVAr= C₆H₄OCH₃- ρ ; I, XI, XXI R = C₃H₇; II, XII, XIII, XXII R = C₆H₅; III—V, XIII—XV, XXVI R = C₆H₃(OCH₃)-m, ρ ; V1, XVI R = pyrid -2; VII, XVII R = 5- methylpyrid -2; VIII, XVIII R = α -C₅H₄N; IX, XIX, XXIVR = β -C₅H₄N; X, XX, XXV R = γ -C₅H₄N

The IR spectra of XI-XX (Table 1) show NH absorption bands in the region 3240-3415 cm⁻¹, the characteristic starting imine $\nu_{C=N}$ bands at 1640-1680 cm⁻¹ were absent. PMR spectra proved most informative in confirming the structures of these allylamines (Table 2). The allyl proton signals for XI-XX showed a typical shift and multiplicity and were readily assigned. The presence of two multiplets at 4.90-5.32 (2H) and 5.47-6.07 (1H) as well as the triplet signal (2H) at 2.20-2.65 ppm in all of the synthesized compounds were diagnostic of the $-CH_2-CH=CH_2$ fragment.

Brief heating with conc. H₂SO₄ causes intramolecular electrophilic cyclization of allylamines XI-XX (Tables 1, 3). According to PMR spectral data, the compounds obtained were formed as a mixture of two geometric isomers whose ratio was 1:1 for the tetrahydroquinoline XXI and 4;1 for XXII-XXV.

The configuration and conformation of these isomers were determined by a detailed analysis of their high resolution PMR spectra (Table 4). Nuclear Overhauser (NOE) difference (NOEDIFF) spectroscopy [8] was used to determine the mutual configuration of protons 2a-H and 3a-H in the predominant isomers and thus the substituents at positions 2 and 4. Saturation of the 2a-H signal caused no NOE in 3a-H. The value of the NOE for 2a-H and 4a-H was around 10%. This unambiguously points to a trans disposition of protons 2a-H and 3a-H and cis for 2a-H and 4a-H. It thus supports the existence of the predominant isomer of XXII-XXVa as a half chair conformer with a cis relationship for the substituents at positions 2 and 4. A more detailed rationale for the structure of one of the tetrahydroquinolines (XXIII) has previously been reported by us [9]. The vicinal spin-spin coupling ${}^3J_{3a4a}$ (Table 4) confirms the pseudo equatorial orientation of the 4-methyl group. According to the values of ${}^3J_{2a3a}$ and ${}^3J_{3e4e}$ (Table 4), the minor isomer B of XXII-XXV also exists in the half chair conformation but with trans oriented substituents. The minor isomer B has an equatorial substitutent at positions 2 and an axial methyl at 4.

TABLE 4. ¹H NMR Spectral Data for 4-Methyl-1,2,3,4-tetrahydro-2-phenyl(pyridyl)quinolines XXII-XXV (400 MHz, CDCl₃, TMS)

	2-R	(7,44 (0); 7,38 (m); 7,32 (p)	7,43 (o); 7,37 (m); 7,32 (p)	7,208,57	7,208,74	7,308,64	7,288,64	7,358,57	7,328,55
	Ŧ	3,98	4,06	*	*	3,98	4,12	4,03	4,18
	8-H	 6,54	6,57	6,62	6,64	6,56	6,58	6,57	6,59
Chemical shift, 8, ppm	7-H	7,03	7,04	7,03	7,04	7,03	7,04	7,03	7,04
	Н-9	6,72	6,70	6,72	69'9	6,75	6,70	6,74	6,71
	Н-5	7,20	7,10	7,18	7,08	7,20	7,10	7,18	7,08
	4-CH ₃	1,37	1,38	1,36	1,37	1,37	1,37	1,34	1,34
	4-H	3,15	2,94	3,17	2,90	3,16	2,94	3,13	2,85
	3е-Н	2,12	1,86	2,31	2,02	2,11	1,86	2,11	1,86
	3а-Н	1,78	2,06	1,70	2,06	1,78	2,05	1,70	1,99
	2-H	4,49	4,49	4,63	4,62	4,51	4,52	4,46	4,48
	Isomer	cis	trans	cis	trans	cis	trans	cis	trans
Compound		IIXX		IIIXX		XXIV		XXX	

Spin-spin coupling constants, J, Hz 1)

The cis-trans ratio of isomers A and B for the tetrahydroquinolines XXII-XXV is 4:1, i.e. the intramolecular cyclization of the corresponding N-aryl-N-alkenylamines occurs with a high degree of stereoselectivity.

Under similar conditions we were not able to cyclize the 4-amino-1-butenes XIII-XVII due to strong tarring of the reaction mass. Under milder conditions (addition of conc. H_2SO_4 to a chloroform solution of allylamines XIII, XIV at 0°C) it was possible to separate the corresponding heterocyles XXVI, XXVII in low yields (2-5%). Along with singlet signals for the CH_3O groups at 3.80 and 3.87 ppm in the PMR spectrum of XXVI there is present a doublet at 1.40 ppm for the 4- CH_3 group protons, characteristic for XXI-XXV described above.

EXPERIMENTAL

PMR spectra for the synthesized compounds were recorded on Bruker WP-80 and WM-400 spectrometers using CDCl₃ solvent. IR spectra were taken on a Specord IR-75 instrument as thin layers between KBr plates. Alufol plates were used for TLC.

Elemental analytical data for C, H, and N agreed with that calculated.

N-Aryl-N-alkenylamines XI-XX. The corresponding imine I-X (0.03 mole) in absolute ether or THF (50 ml) was added in stages to a solution of allylmagnesium bromide which had been prepared from magnesium (0.15 mole) and allyl bromide (0.05 mole) in absolute ether (150 ml). The product has heated for 2-4 h and decomposed using a saturated solution of ammonium chloride. The ether layer was separated and the aqueous layer extracted with ether (3 \times 50 ml), and dried with MgSO₄. The ether was evaporated and the product distilled *in vacuo*. The parameters for XI-XX are given in Tables 1 and 2.

4-Methyl-1,2,3,4-tetrahydroquinolines XXI-XXVII. A mixture of the corresponding phenylamino compound XI-XVI, XVIII-XX (0.005 mole) and H_2SO_4 monohydrate (5 ml) was heated at 60°C for 2-4 h. The product was poured onto ice and basified with aqueous ammonia solution (25%) to pH 8-9. After extraction with ether (3 × 30 ml) and evaporation of solvent, the residue was purified on an Al_2O_3 column (h = 10 cm, d = 2 cm, eluent ethyl acetate—pentane, 1:1). The parameters for XXI-XXVII are given in Tables 1, 3, and 4.

REFERENCES

- 1. G. Jones (ed.), The Chemistry of Heterocyclic Compounds, Vol. 32, Wiley, Bristol (1982), p. 2.
- D. Barton and W. D. Ollis (eds.), General Organic Chemistry [Russian translation], Vol. 8, Khimiya, Moscow (1985),
 p. 197.
- 3. D. Lednicer and L. A. Mitscher, The Organic Chemistry of Drug Synthesis, Vol. 3, Wiley, New York (1984), p. 183.
- 4. N. S. Prostakov, V. V. Kuznetsov, and E. E. Stashenko, Khim. Geterotsikl. Soedin., No. 11, 1514 (1989).
- 5. V. V. Kuznetsov, A. R. Pal'ma, A. É. Aliev, A. V. Varlamov, and N. S. Prostakov, Zh. Org. Khim., 27, 1579 (1991).
- 6. V. V. Kuznetsov, S. V. Lantsetov, A. É. Aliev, A. V. Varlamov, and N. S. Prostakov, Khim. Geterotsikl. Soedin., No. 11, 1528 (1991).
- 7. V. V. Kuznetsov, S. V. Lantsetov, A. É. Aliev, A. V. Varlamov, and N. S. Prostakov, Zh. Org. Khim., 28, 74 (1992).
- 8. G. E. Chapman, B. D. Abercrombie, P. D. Cary, and E. M. Bradbury, J. Magn. Reson., 31, 459 (1978).
- 9. V. V. Kuznetsov, A. É. Aliev, A. R. Pal'ma, A. V. Varlamov, and N. S. Prostakov, Khim. Geterotsikl. Soedin., No. 7, 947 (1991).